Informations générales
Entité de rattachement
L'Autorité de sûreté nucléaire et de radioprotection est une autorité administrative indépendante créée par la loi du 21 mai 2024 relative à l'organisation de la gouvernance de la sûreté nucléaire et de la radioprotection pour répondre au défi de la relance de la filière nucléaire.
Elle assure, au nom de l'État, le contrôle des activités nucléaires civiles en France et remplit des missions d'expertise, de recherche, de formation et d'information des publics. L'ASNR est composée de fonctionnaires, d'agents de droit public et de salariés de droit privé.
Référence
2025-1184
Description du poste
Intitulé du poste
Intégration multimodales avec données manquantes en blocs dans l'étude des effets à faibles doses H/F
Type de contrat
Doctorat
Statut
Cadre
Disponibilité du poste
01/10/2025
Localisation du poste
Fontenay-aux-Roses
Environnement / Organisation / Contexte
Des études épidémiologiques montrent l'effet d'une exposition à des rayonnements ionisants (RI) sur le développement de maladies cardiovasculaires (MCV, comme l'athérosclérose ou les accidents vasculaires cérébraux) pour des doses fortes à modérées (au-dessus de 500 mGy). Mais la capacité statistique actuelle des études est contestée pour qualifier l'effet de l'exposition à des doses faibles de rayonnements ionisants sur les maladies cardiovasculaires, compte tenu des biais induits par de nombreux les facteurs de confusion.
Pour faire progresser la compréhension des conséquences d'une exposition aux RI à faibles doses, les analyses s'appuient sur les données multi-omiques de la réponse biologique d'un organisme vivant. Toutefois, la diversification des types de données utiles à la réduction des facteurs de confusion induit une augmentation de données manquantes, pour lequel le plafond acceptable établi entre 20 % et 30 % est ainsi souvent dépassé. Considérant qu'éliminer les données manquantes peut réduire gravement la précision de l'analyse, la thèse vise à construire une méthode d'analyse qui permette de traiter les données multi-omiques tout en intégrant les données manquantes à l'analyse des effets d'une exposition faible aux RI sur les MCV.
Mission
L'objectif de la thèse sera de développer des approches méthodologiques spécifiques pour intégrer les différentes modalités de données, en tenant compte des problématiques liées aux données manquantes et à la présence de facteurs confondants (dont les co-expositions), afin d'identifier les mécanismes d'action impliqués dans la réponse d'un organisme à un stress particulier.
S'appuyant sur des données déjà générées, le.a candidat.e sera impliqué.e dans le développement d'algorithmes et de modèles statistiques pour l'analyse de grands ensembles de données biologiques, afin d'y intégrer convenablement le traitement des données manquantes et des facteurs confondants, notamment des co-expositions (Goujon E et al., 2024). Le.a candidat.e aura la charge de développer, tester et évaluer les outils statistiques en s'appuyant sur les méthodes proposées dans la littérature (Peltier C et al., 2023 ; Baena-Miret S et al. 2024).
Les deux premières années de la thèse seront consacrées au développement méthodologique pour l'imputation des données et l'incorporation des facteurs dans une analyse intégrative. Et la dernière année sera consacrée à l'analyse des données et à l'interprétation des résultats par une analyse d'enrichissement des voies biologiques.
Références
Elen Goujon, Olivier Armant, Clément Car, Jean-Marc Bonzom, Arthur Tenenhaus, and Imène Garali. Batch Effect Correction in a Confounded Scenario: a Case Study on Gene Expression of Chornobyl Tree Frogs. In Roberta Gori, Paolo Milazzo, and Mirco Tribastone, editors, Computational Methods in Systems Biology, pages 89–107, Cham, 2024. Springer Nature Switzerland.
Peltier C, Le Brusquet L, Lejeune FX, Moszer I, Tenenhaus A (2022). “Missing Values in RGCCA: Algorithms and Comparisons.” In 8th International Conference on Partial Least Squares Structural Equation Modeling (PLS'22).
Baena-Miret S, Reverter F, Vegas E. A framework for block-wise missing data in multi-omics. PLoS One. 2024 Jul 23;19(7):e0307482. doi: 10.1371/journal.pone.0307482. PMID: 39042603; PMCID: PMC11265675.
Profil recherché
Le ou la candidat(e) doit être titulaire d'un master en Mathématique appliquées, Statistiques (parcours data et/ou analyse et modélisation des données) ou domaine connexe avec un intérêt pour la recherche en biologie ou en santé. Le ou la candidat(e) devra posséder un solide bagage théorique en algèbre linéaire et en statistique. Afin de valider et d'appliquer les méthodes développées, il est demandé la maitrise d'outils de programmation tels que R et Python. Un bon niveau d'anglais est souhaitable. La capacité à travailler en équipe multidisciplinaire sera appréciée.
Le doctorant effectuera 60% de son temps de recherche au sein du Laboratoire de radiobiologie des expositions accidentelles de l'ASNR et 40% au Laboratoire
des signaux et systèmes de CentraleSupelec.
Télétravail
Occasionnel
Diversité
La diversité est une des composantes de la politique RSE, RH et Qualité de Vie au Travail à l’ASNR. Nous accordons la même considération à toutes les candidatures, sans discrimination, pour inclure tous les talents.
Quelles que soient les différences, nous souhaitons attirer, intégrer et fidéliser nos candidats et nos collaborateurs au sein d’un environnement de travail inclusif.
L’ASNR conduit une politique active depuis de nombreuses années en faveur de l'égalité des chances au travail et l'emploi des personnes handicapées. Si vous êtes en situation de handicap, n'hésitez pas à nous faire part de vos éventuels besoins spécifiques afin que nous puissions les prendre en compte.
Localisation du poste
Localisation du poste
Europe, France, Ile-de-France, Hauts-de-Seine (92)
Critères candidat
Langues
Anglais (2- Niveau professionnel)